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Note 

A Graphical Method for Finding Complex Roots 
and Its Application to Plasma Physics Problems 

A graphical method is described for finding the complex roots of a nonlinear equation: 
g(w) = 0. Basically a mesh of potential roots, w, is chosen; values of g on this mesh are 
calculated; and the zero contours of Re(g) and Im(g) are plotted. The intersections of these 
contours are the desired roots, or possibly singularities. The primary advantage of the 
method is that it provides the complete spectrum of roots or eigenvalues within a specified 
range of w-space. The method is easy to apply, provided a reliable contour plotting routine 
is available, and is quite efficient whenever g is inexpensive to evaluate. Application of the 
method is illustrated by two example problems from plasma physics. 

1. INTRODUCTION 

A frequently occurring problem is that of finding the roots to a nonlinear equation, 
i.e., solving for the w values that satisfy g(h) = 0, where g is nonlinear. Starting 
from a reasonable guess, Newton’s method [l] is an efficient way of finding a single 
root. Additional roots, when present, can be obtained by changing the initial guess 
appropriately. Alternatively, if one is interested in only a part‘icular range of w values, 
one can plot g(o) over that range and obtain all the roots graphically’. 

Sometimes g and o are complex. In such cases the problem is equivalent to’finding 
the vector roots of a system of two nonlinear equations. Again generalization of 
Newton’s method [l] can be used. However, such methods will still give only a single 
root at a time, and their convergence is typically even more sensitive to the accuracy 
of the initial guess than in the real or scalar case. Consequently, the root (s) of most 
interest might not be found. 

For the case of complex roots, a simple graphical method is also available. This 
method, which is described here, has the advantage of giving all the roots within a 
specified region of the w-plane. One is thus .assured that important roots are not 
overlooked. The method is easily implemented on a computer, provided ,a reliable 
contour plotting routine is available, and is practical as long as the evaluation of 
g(w) is not too time consuming. 

2. DESCRIPTION OF METHOD 

To apply the graphical method, one first chooses a region of the o-plane in which 
the roots are desired. Next, a mesh of UJ values is overIaid on the region, and g(o) is 
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calculated on this mesh. Finally, the contours for which Re( g) = 0 and for which 
Im( g) = 0 are plotted on a single plot. In the absence of singularities, the inter- 
sections of the two contours correspond to the desired roots. 

When isolated singularities or branch cuts are present, additional intersections 
may appear on the plot. For example, a branch cut will appear as a zero contour of 
Re( g) if the values of Re( g) are of opposite sign on either side of the branch cut. To 
distinguish between those intersections that are roots and those that are singularities, 
the local variation of g must be examined. 

3. EXAMPLIZS 

Two closely related examples from plasma physics [2] are given here. Both concern 
finding the complex frequencies characteristic of collisionless drift modes in a hydrogen 
plasma. A slab model is assumed with a density gradient and magnetic shear but no 
temperature gradients. The drift modes are then described as solutions to an ordinary 
differential equation (with appropriate boundary conditions), in which the charac- 
teristic frequencies appear as generalized eigenvalues. In the first example the eigen- 
values are found as roots of an analytic dispersion relation, which results from an 
approximate solution to the differential equation. In the second example the differ- 
ential equation is solved directly to obtain the eigenvalues. 

These examples illustrate several points. First, they demonstrate the effectiveness of 
the graphical method for finding roots in the presence of considerable structure. 
Second, the versatility of the method is displayed; it can be used not only to find 
roots of nonlinear equations but also to obtain generalized eigenvalues of differential 
equations. Finally, since one example is an approximation to the other, the validity 
of the approximation can be assessed. 

3.1. Roots of Algebraic Equations 

By using the method of matched asymptotic expansions [3] and by considering 
only even modes, the complex eigenvalues, w, are found to satisfy the following 
dispersion relation: 

l- 274&l” +g,q;+ +-) sin [+- (1 + $)] ln(x,plls) = 0. (1) 

This is just Eq. (2) of Ref. [2] with spurious factors of 4 and 21i8 removed (consistent 
with the derivation in Ref. [3]). Branch cuts for the square root and logarithm func- 
tions are taken to lie along the negative real axis, i.e., the principal branches are 
chosen. 

All quantities appearing above (except for s) are as defined in Ref. [2]: 

A = p”;ZD-l{o[l + T(1 - r,)] - o*T,), (2) 
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(3) 

o,, ES i’~1’2x,p”;aD-1(w - co*), (4) 

(5) 

S = D-lo(l + T). (7) 

The expression for S has been revised here to apply for arbitrary values of 0,[4]. 
The r appearing in Eq. (1) is the complex gamma function, while r, is defined as 

rj z e+&(b), (8) 

where If is the modified Bessel function. The remaining quantities above are treated 
as parameters: M/m, T, L,/LB , and b.are specified; Pi cancels out; and w* can be used 
to normalize w. Here the normalizing frequency will be taken to be 

w, = (Tb)lho* . (9) 

By making use of the identities, 

r(z + 1) = zF(z) (10) 

and 

~0 N - 4 = *, (11) 

and upon multiplying by piaD(A + ip), the dispersion relation becomes 

g(w) = @D In + ip - 2Ga, ($)“’ ln(~,$/~)l = 0, (12) 

where 

(13) 

Equation (12) is the nonlinear equation that is solved here. It differs from the perturba- 
tion theory result (Eq, (3) of Ref. [2]) only through the factor G. 

With the following choice of parameters- M/m = 1836, 7 = 1, L,/L8 = 0.05, and 
b = 0.5~the plot of the zero contours of Re( g) (solid) and Im( g) (dotted) is as 
shown in Fig. 1. Numerous intersections are apparent. Those marked with o’s are 
roots, while those marked with *‘s are isolated singularities lying on a branch cut. 
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FIG. 1. Zero contours of Re(g) and Im(g) for fkt example. 
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FIG. 2. Contours of 1 g 1 - 1 for first example. 

This identification is facilitated by examining a contour plot of j g [ - 1, which is 
shown in Fig. 2. Negative contours are dotted, while zero or positive contours are 
solid. Hence, roots appear as dotted bull’+eyes; isolated singularities appear as 
solid bull’s-eyes; and branch cuts appear as linear features. 

Figures 1 and 2 were generated by calculating the g values on a 101 x 51 mesh in 
the o-plane. On a CDC 7600 computer, the g calculation required 4 set of CPU time, 
while the contour plotting took another 2 sec. 
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3‘2. Eigewalues of Differential Equation 

The differential equation for collisionless drift modes in a plasma slab without 
temperature gradients is (Eq. (4) in Ref. [2]) 

and the boundary conditions for even modes are 

$Yo, w> = 0, (15) 
&@J, w) = 0. _ .’ (16) 

The dependent variable, 4, is the perturbed electrostatic potential, which is complex, 
while the independent variable, x, is the coordinate in the direction of the density 
gradient. The remaining quantities in Eq. (14) have been defined previously except for 

xi = (M/m)1&1/2~, (17) 

and 2, which is the plasma dispersion function [5]. 
The standard method for solving Eq. (14) is as follows [6]. A value for w is assumed, 

and a relatively large distance, xb , is chosen for which the WKB approximation gives 
an accurate solution, +(xb, w), consistent with the second boundary condition 
[Eq. (16)]. Applying the Numerov difference scheme to Eq. (14), one “shoots”, from 
xg to 0. The value of o is then adjusted by Newton’s method, and the shooting 
procedure is repeated until the first boundary condition [Eq. (15)] is satisfied. 

To apply the graphical method, one defines 

and carries out the above.procedure except for the Newton’s method iteration. For 
the same parameter values as in the first example, the plot of the zero contours of 
Re( g) and Im( g) is as shown in Fig. 3. By examining Fig. 4, the intersections can be 
categorized as roots (o’s), isolated singularities (x ‘s), or branch cuts (+‘s). The latter 
distinction is significant, since the isolated singularities correspond to the odd-mode 
solutions of Eq. (14). The complete spectrum of even and odd modes is thus obtained 
using the graphical method. 

The cost of calculating the g values for this example is understandably greater 
than for the first example, since meshes in x as well as in w are required. An x-mesh 
characterized by 501 points and a shooting distance of xb = 10 r112pf was found 
to be adequate, while a 41 x 21 mesh was used in the w-plane. The resulting CPU 
time.on a CDC 7600 computer was 70 sec. 
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FIG. 3. Zero contours of Re(g) and Im(g) for second example. 

FIG. 4. Contours of 1 g 1 - 1 for second example. 

Since the two examples are closely related, it is instructive to compare the numerical 
values obtained for the roots. These are given in Tables I and II and were confirmed 
by iterating with Newton’s method. Depending upon whether Re(w) is positive or 
negative, the roots correspond to either electron or ion drift modes. Evidently the 
only root for which the tabulated values are in even rough agreement is that for the 
electron drift mode that is most unstable, i.e., that has the largest. value for Im(o). 



COMPLEX ROOTS 

TABLE I 

Roots for fht example. 

0.20 0.004 
0.33 -0.17 - 

-0.07 0.011 
-0.14 0.025 
-0.17 0.044 
-0.17 -0.043 - 
-0.22 0.016 
-0.27 0.010 
-0.32 0.007 
-0.35 0.005 
-0.39 0.004 

Note: All roots above correspond to even modes. 

TABLE II 

Roots for second example 

ReW4 Id44 Parity 

0.26 -0.016 Even 
0.30 -0.12 Odd 

-0.23 -0.13 Odd 
-0.30 -0.16 Even 
-0.33 -0.15 Odd 
-0.37 -0.15 Even 
-0.38 -0.14 Odd 

This root is the one that the approximate solution is intended to predict. With the 
choice of parameters made here, the approximation is apparently not valid for the 
ion drift modes. 
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